

#################
#################

Table of Contents
Forward: Why We Use Jenkins at Bugfender 2

What is Jenkins and Why Should You Be Using it? 4
What is Continuous Integration? 5
How Does Continuous Integration Differ from Continuous Delivery? 6
How Does CI/CD Benefit a Devops Team? 7

Intro to Jenkins 9
Pros vs. Cons of Jenkins 10

How to Install Jenkins in Ubuntu 13
Selecting the Right Machine 13
Choosing an Operating System 14
How to Install Jenkins 14
Recommended Detour: Add SSL to Protect Your Jenkins Installation 17

How to Add your First Android Job to Jenkins 21
Configuring Android App Builds in Jenkins 21
Accelerate Gradle (optional) 27
Running Unit Tests 28
Running Integration Tests 29
Suggestions for Next Steps 31

How to Add Your First iOS Job to Jenkins 32
How to Add a Mac Node for iOS Builds 33
Configuring iOS Jobs 39
Adding Tests 42

Closing Words 44
Keys to Sustainability Maintaining Jenkins 44
Tips for Getting Started Today 45

Table of contents
 �
1

http://www.bugfender.com
http://www.bugfender.com

#################
#################

Forward

Why We Use Jenkins at Bugfender

We designed Bugfender to meet our own internal need for remote

logging capabilities for mobile app development at Mobile Jazz. We

launched it as a product in its own right in 2015.

We took a common mobile developer headache and made it a little simpler. In

the beginning, several of our developers realized they needed a remote way to

store users’ logs, so they set up the infrastructure to make it happen.

As this side project has become a business of its own right, much of our

progress can be credited to all the work that has gone into automating and

maintaining cloud-based development, testing, and deployment

environments.

About 4 years ago, we realized that although we would write good iOS unit

tests, we did not execute them regularly enough to make sure they kept

working.

Writing tests without using them is a complete waste of time, so we decided

to go one step further: using Jenkins to automate the execution of the tests

every time someone makes a change to the code.

In this way, Jenkins has allowed us to cut excess by reducing the time spent

manually running tests. At Bugfender, we like to home-cook solutions to

automate as much as possible, so this open source software worked for us.

Table of contents
 �
2

http://www.bugfender.com
https://bugfender.com
http://mobilejazz.com/
http://www.bugfender.com

#################
#################

Jenkins makes sure our code compiles, so we save hundreds of hours of

manpower because we don’t have to work through the tiny issues in

compilation and shipping to a production-ready state. Every commit that is

green is deployable to production. Boom, we’re done.

At its core, CI/CD is all about letting machines do what they do best

so humans can do what brings the most value to your company.

Of course, one of the main obstacles is belief in the value of CD/CI at every

company level. As we will explain in the first chapter of in this ebook, there

are complications to maintaining a CI/CD environment, and many developers

find themselves trying to convince upper management why it’s worth it.

Fortunately, the hub of enterprise for Jenkins and DevOps, CloudBees, has put

a number on the savings that businesses can expect from integrating

continuous delivery in their devops teams. CI/CD is all about saving your

company money:

A CloudBees assessment of more than 100 enterprises revealed that continuous delivery enables

an average efficiency gain of 66 hours per developer per year. For a 100-person team, this

efficiency equates to 6,600 more hours to invest in innovation; an estimated annual value of

$350,0001.

Currently, though it seems CI/CD is a popular talking point, many teams

haven’t made the leap yet or neglect the upkeep needed to keep their testing

environment operative.

We created this ebook to help your company fast-track the

implementation of Jenkins, so you can start saving money + start

preventing a common developer headache.  

Table of contents
 �
3

http://www.bugfender.com
https://pages.cloudbees.com/digital-darwinism-with-devops-and-continuous-delivery.pdf
http://www.bugfender.com

#################
#################

What is Jenkins and Why Should You Be Using

It?

�

A common problem for many devops teams is a fragmented

workflow.

Inefficiency can be infuriating.

You know how it goes: individuals on the team tend to work independently.

Coding solo, engineers regularly create large segments of code outside of

version control. Once a developer is “done,” they add their work into the

basecode. Then another team manually runs tests to verify the build.

For years, many teams have found this division of labor annoying and

problematic.

Table of contents
 �
4

http://www.bugfender.com
http://www.bugfender.com

#################
#################

When multiple developers separately commit large changes to version

control, they create complex bugs, multiply time-intensive fixes, and increase

the time it takes to do more manual testing. Everything slows down.

These inefficiencies clog up your build cycle with tedious debugging, slow

down the time to production, and ultimately undercut your company’s profits.

What is Continuous Integration?

Continuous integration (CI) is a process aimed at cutting out build cycle

inefficiencies by allowing developers to compile the team’s code from a

shared version control repository. CI also allows you to automate testing so

you can set up the system to automatically run unit tests or integration tests

for example.

CI automatically monitors the commits that each engineer makes. This

streamlines the build and verification of code so that testing is not so high-

stakes. It’s recognized as a best practice in the software development

community.

CI is run on a shared server that increases visibility, so all the engineers on a

project are aware of changes in the base code day in and day out. In addition,

you can configure the server to alert developers when they submit failing

code so that they can fix any errors they introduce.

Using CI automation allows you to shorten development release cycles and

improve product quality. And it’s all customizable to your project and your

needs.

CI/CD servers, including Jenkins, allow your team to set up the tests that you

need to run.

Table of contents
 �
5

https://jenkins.io/
http://www.bugfender.com
http://www.bugfender.com

#################
#################

There are various levels of testing automation that you can implement:

The most basic test is whether or not the code actually compiles. Code can

also be “linted” or checked for style. Your team can write more complex tests

to cover other bases as well, including unit, integration, stress, regression

testing, etc.

�

How Does Continuous Integration Differ from Continuous Delivery?

A CI service compiles and tests a full application (possibly by running the

application in an emulator). Continuous delivery also pushes this compiled

application to a repository, for example, for alpha testers to use and provide

early feedback.

CD builds are automatically deployed through to the production environment

and can also be used for broader beta testing.

Table of contents
 �
6

http://www.bugfender.com
http://www.bugfender.com

#################
#################

CD is aimed at lean-logistics: automating the process from adding new code

through to acceptance testing. CD automates all the steps so that your build

is ready to be deployed.

➔ Continuous delivery: Besides building the application and running tests

on it, the application is also “delivered,” which often means putting it on

a server for someone to perform manual tests on it, or sent by email to

a test group of users (eg. a mobile app sent by email).

➔ For production builds, delivery means deploying the application for the

end users.

This allows for faster, smaller deployments of your product which reduce

deployment risk. Regular, smaller, leaner deliveries are less risky that huge

ones that only occur once or twice a year.

How Does CI/CD Benefit a Devops Team?

A lot of people talk about CI because it is a best practice to have all code

verified automatically on every commit, regularly run tests, and continuously

deploy–for the reasons mentioned above. The process checks that the

contributions from each developer work well together. Detecting these issues

early makes it easier and faster to fix the bugs.

As you can probably guess, implementing CI/CD will cause a cultural shift in

your team. You will have to become more agile and integrated.

As we mentioned in our intro, CI was created to allow your team to stop

wasting human time trying to manually resolve conflicting segments of new

code, trigger builds, or run tests.

Table of contents
 �
7

http://www.bugfender.com
http://www.bugfender.com
https://codeship.com/continuous-integration-essentials

#################
#################

Instead, it encourages adding small, incremental changes in code so you

don’t end up with huge, complex bugs to fix. This speeds up the build cycle,

potentially streamlining deployment and production.

And it’s helpful to remember–production is where your business actually

makes money.

Also, interestingly, for a multi-developer remote team, CI is extremely helpful

to implement because it brings you all together and continuously combines

your work so you’re all on the same page regardless of geographic location.

Jenkins helps structure the build cycle of a remote team.

How Jenkins Helps the Bugfender Team:

➔ Running Jenkins allows us to continuously check that the code compiles

and run a set of basic tests that we have programmed to verify the base

code after every commit.

➔ We automatically deploy the merged code to an integration environment,

which can be used for manual tests (this bit is called “continuous

delivery”).

➔ We also use it to generate and deploy production builds. Our deployments

are complex because we are not updating a single machine: We’re

updating a whole cluster of machines. We have to be sure to perform

updates in a way that does not disrupt the service. Deployment in such an

environment could be prone to errors if done by a human. 

Table of contents
 �
8

https://bugfender.com
http://www.bugfender.com
http://www.bugfender.com

#################
#################

Intro to Jenkins

�

Jenkins is an open source implementation of a CI server written in Java that

can be used as a self-hosted option automating the build cycle for any

project. It works with any programming language and for multiple platforms

including Windows, Linux and macOS. According to the Jenkins website:

Jenkins, originally founded in 2006 as “Hudson”, is one of the leading automation servers

available. Using an extensible, plugin-based architecture developers have created hundreds of

plugins to adapt Jenkins to a multitude of build, test, and deployment automation workloads. In

2015, Jenkins surpassed 100,000 known installations making it the most widely deployed

automation server.

One of the main benefits of Jenkins is that it is a well-known tool with lots of

community support, there are many plugins available (including well-known

names like Slack, GitHub, Docker, Build Pipeline + more), and the project is

well-maintained by a large community of developers.

There are a lot of conversations going on about CI/CD and the Jenkins

project. But even as late as 2017, a surprising number teams don’t utilize or

Table of contents
 �
9

http://www.bugfender.com
http://www.bugfender.com
https://jenkins.io/
https://plugins.jenkins.io/

#################
#################

maintain their systems because running a CI environment is costly, either in

time or money, often both.

So why even bother with them? Let’s look at that question.

Pros vs. Cons of Jenkins

Jenkins is an old tool with an unfriendly user interface.*
(*The good news is that the Jenkins project just released Blue Ocean, a continuous

delivery software aimed at significantly improving the UI. True to form, it is 100% open

source.)

As your team considers options for continuous integration, it is helpful to

note that Jenkins must be run on a server (cost), so it often needs the

attention of someone with system administration skills (time). You can’t just

set it up and then expect it to run itself–the system requires frequent updates

and maintenance.

Yet, Jenkins is open source and one of the best and most widely used free

tools out there for implementing CI/CD for your devops team.

The main barrier to entry for most teams is the initial setup, procrastination,

or failed previous attempts to set it up.

People tend to know it’s a best practice, but many teams neglect it for more

urgent coding work. Perhaps someone on your team tried to implement

Jenkins at some point, but did not successfully maintain it. Maybe the wasted

effort gave your boss a bad impression about it.

As it is, the reasons people do not implement a CI server are usually very

practical.

Table of contents
 �
10

https://jenkins.io/projects/blueocean/
http://www.bugfender.com
http://www.bugfender.com

#################
#################

One main reason: CI systems regularly break. If a setting in the project

changes, often it is necessary to readjust the configuration of the CI system.

If the CI system is not perceived as highly valuable by the team, they tend to

leave it aside, broken, so it stops delivering value.

Yet another reason for not using CI is that you need to write tests. Writing

tests is something most developers want to do (i.e. a best practice), but they

often don’t find the time to do. Understandably, coding the actual software is

usually a higher priority for business than more administrative tasks.

Also, tests break, meaning when the functionality under a test changes, it

needs to be updated. If they’re not updated, they stop delivering value, as in

the case above. You have to prioritize maintaining the infrastructure yourself

or it will not work.

In summary, it takes time to set up and a decent amount of ongoing

work to keep it updated. But your team can adapt to streamline the

maintenance of the system and tests to increase efficiency.

Of course, there are hosted SaaS alternatives to Jenkins, which could be

beneficial if you’re willing to pay a bit extra for someone else to maintain the

software. Businesses tend to choose this option when they need a superior UI

than what Jenkins offers. But a major benefit of self-hosting is that you have

more control over your own data security.

Implementing CI requires a cultural shift, especially from the management.

They have to allow time for this “unproductive stuff” to be done, while some

of other day to day tasks go on hold.

Table of contents
 �
11

http://www.bugfender.com
http://www.bugfender.com

#################
#################

Still, the brief sacrifice of time translates into long-term benefits for the

whole company ($$$). With Jenkins, your code is easier to maintain and

fewer bugs sneak into production. Your team becomes more integrated.

Builds take less time. Your business can ship faster and keep up with the

changing needs of your customers.

All of this will require a mindset shift:

CI is not an expense but an investment. And the ROI for implementation can

be counted in time saved, errors avoided, and higher quality products

delivered more easily to your clients.

Table of contents
 �
12

http://www.bugfender.com
http://www.bugfender.com

#################
#################

How to Install Jenkins in Ubuntu

�

If you’re getting started with Jenkins, there are many things to

consider before you hit download.

You have to choose where to run Jenkins: on hardware that you maintain

yourself or through a hosting service. You should work with your team to

decide on the best option for your needs.

As a fully remote lifestyle business, we chose to use Amazon Web Services

on a t2.nano machine type with Ubuntu 16.04, but this configuration can be

adapted depending on the use case.

Selecting the Right Machine

Make sure you choose a machine with at least 1GB of RAM. If you don’t have

enough internal memory, Jenkins won’t run. For decent performance, 2 to 4GB

is ideal.

Table of contents
 �
13

https://bugfender.com/
http://www.bugfender.com
http://www.bugfender.com

#################
#################

For Android, we would recommend a t2.medium machine at least. For iOS,

you need a Mac, so we would recommend a Mac Mini. Many people find an

older Macbook around the office and use it to run Jenkins, though we found

that ours got overheated so we had to upgrade.

Choosing an Operating System

Jenkins runs on nearly any operating system you can imagine, as long as it

can run Java or Docker. For this post I will be using Ubuntu, but you can use

whatever operating system suits you best because the steps are very similar.

How to Install Jenkins

Step 1: Install Jenkins Using your Package Manager

On Ubuntu you can do this with:

wget -q -O - https://pkg.jenkins.io/debian-stable/jenkins.io.key |

sudo apt-key add -  

echo "deb http://pkg.jenkins.io/debian-stable binary/" | sudo
tee /etc/apt/sources.list.d/jenkins.list  

sudo apt-get update && sudo apt-get -y install jenkins

Note: You have other installation options including two different release lines.

See https://jenkins.io/download/ to learn the difference between weekly

release and LTS (long-term support) options.

Once installed, Jenkins will be running on port 8080. If you are accessing this

server remotely, make sure to open the port 8080 in your firewall.

Table of contents
 �
14

http://www.bugfender.com
http://www.bugfender.com
https://jenkins.io/download/

#################
#################

Step 2: Open Your Browser

In your browser, go to http://your-ci-server-name.com:8080. If your machine is

running Jenkins, the window should display the setup wizard.

Step 3: Unlocking Jenkins

�

In order to ensure that you’re the real administrator of the machine, the

password has been written to a specified log file. In a fresh terminal, type in

sudo cat and then paste in the pathway provided on this page in order to

get a temporary password. Then you can enter the password in the

Administrator password field in your browser.

This step is a security measure in case your Jenkins download is publicly

accessible from the internet or your company’s network.
(For information about more security measures for Jenkins, see “Recommended detour:

add SSL to protect your Jenkins installation” below.)

Table of contents
 �
15

http://www.bugfender.com
http://www.bugfender.com

#################
#################

Step 4: Customizing Jenkins Plugins

�

You can go ahead and click the Install the suggested plugins box. This will

activate the download of a handful of useful plugins, including Git and some

Pipeline plugins. You can always download other plugins as necessary to

supplement these pre-selected options.

Table of contents
 �
16

https://plugins.jenkins.io/
http://www.bugfender.com
http://www.bugfender.com

#################
#################

Step 5: Create Admin Login

�

You can create your user account by adding a username, entering a new

password, and including a full name and email address. Once you’re in

Jenkins, you can choose to enable new users which will allow colleagues to

create additional logins as needed.

And that’s it! You’ve installed Jenkins.

Table of contents
 �
17

http://www.bugfender.com
http://www.bugfender.com

#################
#################

�

Recommended Detour: Add SSL to Protect Your Jenkins Installation
Since Jenkins has access to your application’s source code, we recommend

you use encryption. The essence of your product–the code–is likely sensitive

and should be kept private. If you are running Jenkins through the internet or

on a local network shared with other people, it might be good to protect

communications with SSL.

Since the launch of Let’s Encrypt, it’s fairly easy and completely free to get

these certificates, so we highly recommend it. Don’t be lazy!

Step 1: If your server is behind a firewall, first make sure you are accepting

inbound traffic on ports 80 and 443, and remove access to port 8080.

In order to get SSL working, you’ll first need a DNS name for your server. In

this example, we are calling it your-ci-server-name.com. Make sure to edit the

Table of contents
 �
18

https://letsencrypt.org/
http://www.bugfender.com
http://www.bugfender.com

#################
#################

configuration files we will be listing here to match the domain name you

choose.

Step 2: Then install nginx (sudo apt-get install nginx) and edit your /etc/

nginx/sites-enabled/default file to look like this:

upstream app_server {  
 server 127.0.0.1:8080 fail_timeout=0; 
}  
 
server {  
 listen 80 default_server;  
 listen [::]:80 default_server;  
 server_name _;  
 location ^~ /.well-known/acme-challenge/ { 
 alias /usr/share/nginx/html/.well-known/acme-challenge/; 
 }  
 location / {  
 return 301 https://$host$request_uri; 
 }  
}

Once it is installed, ask nginx to load your changes: service nginx reload

This will let the Let’s Encrypt validation service talk to your server and verify

that you own it.

Step 3: Now you can install the Let’s Encrypt agent and make an SSL

certificate for your server:

sudo apt-get install letsencrypt  
Letsencrypt

Follow the steps of the wizard and you will end up with your SSL certificates

in a directory like /etc/letsencrypt/live/your-ci-server-name.com/.

Table of contents
 �
19

http://www.bugfender.com
http://www.bugfender.com

#################
#################

Now edit again /etc/nginx/sites-enabled/default to use those certificates, add

the following lines:

server {  
 listen 443;  
 server_name your-ci-server-name.com; 
 ssl on;  
 ssl_certificate /etc/letsencrypt/live/your-ci-server-
name.com/fullchain.pem;  
 ssl_certificate_key /etc/letsencrypt/live/your-ci-server-
name.com/privkey.pem;  
 
 location / {  
 proxy_set_header X-Forwarded-For
$proxy_add_x_forwarded_for;  
 proxy_set_header X-Forwarded-Proto https; 
 proxy_set_header Host $http_host; 
 proxy_redirect off;  
 
 if (!-f $request_filename) {  
 proxy_pass http://app_server; 
 break;  
 }  
 }  
}
Then again ask nginx to load your changes: service nginx reload

Step 4: Now you should have SSL, try opening https://your-ci-server-

name.com on your browser. If you followed these steps correctly you will

looking at your brand new encrypted Jenkins installation.

Now that Jenkins is fully installed, keep reading to learn how to add your first

Android and iOS jobs.

Table of contents
 �
20

http://www.bugfender.com
http://www.bugfender.com

#################
#################

How to Add your First Android Job to Jenkins

�

Now you’re ready to go. In this demo, we’ll use an example application using

Bugfender SDK in Android.

You’ll obviously want use your own built Android application or library. The

steps for adding your own Android project to Jenkins will be the same.

Building iOS apps? Check out the next section for iOS builds.

First off, you’ll need to prepare the machine to compile and run Android

applications. If you haven’t already installed Jenkins, you can follow the steps

in the previous post to install Jenkins in your server.

  

Table of contents
 �
21

http://www.bugfender.com
https://github.com/bugfender/BugfenderSDK-android-sample
https://github.com/bugfender/BugfenderSDK-android-sample
http://www.bugfender.com

#################
#################

Configuring Android App Builds in Jenkins

Step 1: Install Java JDK

sudo apt-get install java-8-openjdk

Step 2: Install Android SDK

Go to https://developer.android.com/studio/index.html#downloads, and grab

the link listed in the table for Get just the command line tools > Linux. Don’t

download anything, just copy the link.

sudo apt-get install unzip  
 
here you paste the link you grabbed in the developer.android.com site 
 
sudo -iu jenkins wget https://dl.google.com/android/repository/
sdk-tools-linux-3859397.zip  
 
sudo -iu jenkins mkdir android-sdk  
 
sudo -iu jenkins unzip sdk-tools-linux-3859397.zip -d android-sdk 
 
this step is important to accept the Android SDK license 
 
yes |sudo -iu jenkins android-sdk/tools/bin/sdkmanager --licenses

Step 3: Configure Jenkins

Then, log in to Jenkins and configure the Android SDK that you just installed:

Open https://your-ci-server-name.com on your browser. You’ll see something

like this:

Table of contents
 �
22

https://developer.android.com/studio/index.html%23downloads
http://www.bugfender.com
http://www.bugfender.com

#################
#################

�

● Go to Manage Jenkins > Configure System

● Check “Environment variables”

● Add Name: ANDROID_HOME

● Add Value: /var/lib/jenkins/android-sdk

● Click “Apply” then “Save”

�

Step 4: Create an Android Job

Now go back to the home page. Click on New Item. Enter your project name

and select “Freestyle project.”

Table of contents
 �
23

http://www.bugfender.com
http://www.bugfender.com

#################
#################

�

Step 5: Downloading Your Code to Jenkins

Next, you need to add a link to your repository so that Jenkins can download

your code. Specify the Git URL of your repository in the Source Code

Management section. As mentioned, we’re going to use this sample

repository: https://github.com/bugfender/BugfenderSDK-android-sample.git.

If you have a Mercurial or Subversion repository, they work the exact same

way. If you have a private repository, you can also create SSH keys to access

your repository with the git protocol.

Table of contents
 �
24

http://www.bugfender.com
https://github.com/bugfender/BugfenderSDK-android-sample.git
http://www.bugfender.com

#################
#################

�

Step 6: Configuring Jenkins Build Triggers

You can also specify Build Triggers that will build the project automatically for

you. It is best to use a hook in order to trigger builds automatically when

someone pushes code to the repository.

�

Table of contents
 �
25

http://www.bugfender.com
http://www.bugfender.com

#################
#################

For BitBucket, Gitlab and most Git providers, you can use “Trigger builds

remotely” option. This will give a URL that you can configure as a webhook in

your provider to automatically start a build.

For GitHub users, the easiest is to find and install the “GitHub plugin” (in

Manage Jenkins > Manage Plugins) and a GitHub specific option will appear.

This will install the webhook for you.

Step 7: Build

Once you have the source code in Jenkins, it’s time to build. If your project

has a Gradle wrapper, that’s what you should use. In our case, we’ll create an

Invoke Gradle script build step like this:

�

If you have an Ant-based project, there is also an Invoke Ant build step or for

maximum flexibility you can use the Execute shell build step.

Table of contents
 �
26

http://www.bugfender.com
http://www.bugfender.com

#################
#################

�

Test your build by pressing “Save.”

And that’s it. Your first Android project has been added to Jenkins. Now you

may want to consider accelerating Gradle and setting up automated testing in

Jenkins.

Accelerate Gradle (optional)
If you’re running builds based on Gradle, you can save some build time by

running Gradle as daemon. In order to get it running do the following:

mkdir -p /var/lib/jenkins/.gradle  
 
echo org.gradle.daemon=true | sudo -iu jenkins tee -a /var/lib/
jenkins/.gradle/gradle.properties

Table of contents
 �
27

http://www.bugfender.com
http://www.bugfender.com

#################
#################

Running Unit Tests
If you want to run unit tests, you can do so by adding another build step with

the test Gradle task, like this:

�

Table of contents
 �
28

http://www.bugfender.com
http://www.bugfender.com

#################
#################

Running Integration Tests

In order to set up UI tests, you will need to run an emulator. Even though

Jenkins has an Android Emulator Plugin, we have found that it has not been

updated and is no longer working with the latest versions of the Android SDK.

Here is our suggested workaround:

Step 1: Download the emulator. In order to list the SDKs available, run:

sudo -iu jenkins android-sdk/tools/bin/sdkmanager --list --verbose

Quick note on selecting the right image for you: x86 based images run faster

but also need hardware acceleration. You might have to enable KVM

acceleration (sudo modprobe kvm) in your server and your server can not be a

virtual machine. For this reason we’re choosing an ARM image, which runs

slower but works.

Step 2: In our case, we’re looking to run our application on Android SDK level

25, so system-images;android-25;google_apis;armeabi-v7a seems suitable,

then we install it this way:

sudo -iu jenkins android-sdk/tools/bin/sdkmanager 'system-

images;android-25;google_apis;armeabi-v7a'

Step 3: Once installed, we create an Android Virtual Device (an emulator

instance) with it:

echo no | $ANDROID_SDK_ROOT/tools/bin/avdmanager -v create avd --

force --package 'system-images;android-25;google_apis;armeabi-v7a'

--name Android25 --tag google_apis --abi armeabi-v7a

Table of contents
 �
29

http://www.bugfender.com
http://www.bugfender.com

#################
#################

Step 4: Then we use Supervisord to run the Android emulator as a system

service, always in the background. In order to install it:

sudo apt-get install supervisor

Then, create a configuration file in /etc/supervisor/conf.d/emulator.conf:

[program:emulator]  
 
command=/var/lib/jenkins/android-sdk/emulator/emulator -avd
Android25 -no-window -noaudio -no-boot-anim -accel on -ports
5556,5557  
 
autostart=true  
 
user=jenkins  
 
environment=ANDROID_SDK_ROOT=/var/lib/jenkins/android-sdk

Step 5: Once this is done, restart supervisord to apply the changes:

sudo service supervisor restart

The emulator should start in the background. It might take 1-2 minutes. You

will see the emulator device appear in the devices list when it’s ready:

sudo -iu jenkins android-sdk/platform-tools/adb devices

Step 6: In the Jenkins job, add an Execute shell build step like this:

Table of contents
 �
30

http://www.bugfender.com
http://supervisord.org/
http://www.bugfender.com

#################
#################

�

Code:
ANDROID_SERIAL=emulator-5556  
 
wait for emulator to be up and fully booted, unlock screen 
 
$ANDROID_HOME/platform-tools/adb wait-for-device shell 'while [[-
z $(getprop sys.boot_completed)]]; do sleep 1; done; input
keyevent 82'  
 
./gradlew connectedAndroidTest

Suggestions for Next Steps
There are more options like running an Android emulator, installing the

application, and running various tests on it.

In addition, there are some really interesting plugins that you can play with:
➔ Android Emulator Plugin — At the moment, this plugin is not properly

working with latest Android SDK. But our best guess is that they will fix

it and it will be working again soon. As an alternative, you can use an

older SDK version.
➔ Android Signing Plugin
➔ Google Play Android Publisher Plugin

Table of contents
 �
31

https://wiki.jenkins.io/display/JENKINS/Android+Emulator+Plugin
https://wiki.jenkins.io/display/JENKINS/Android+Emulator+Plugin
https://wiki.jenkins.io/display/JENKINS/Android+Signing+Plugin
https://wiki.jenkins.io/display/JENKINS/Google+Play+Android+Publisher+Plugin
http://www.bugfender.com
http://www.bugfender.com

#################
#################

How to Add Your First iOS Job to Jenkins

�

In order to build iOS applications you will need to run the server on a macOS

machine. You could install Jenkins directly on a Mac computer, but our

preferred way is to have a small Mac mini machine* in our office devoted to

these tasks.

Even though there are some server hosting options for macOS, they are not

as commonly used as Android hosting options. Our solution is to run Jenkins

in a Linux machine and have a macOS worker machine for the iOS builds.

(*We mention a Mac mini because it’s the cheapest macOS machine you can get. In 2017,

new models started at around $499. But if you have any other Macs laying around, such as

an old MacBook with 1GB of RAM or more, that can work as well.)

Table of contents
 �
32

https://www.apple.com/mac-mini/
http://www.bugfender.com
http://www.bugfender.com

#################
#################

How to Add a Mac Node for iOS Builds

Follow these steps to add a Mac node as a worker node to a running Jenkins

server. If you’ve already done this step, skip to “Configuring iOS jobs” below to

start adding a iOS build to Jenkins.

Please note before we begin: you do not need a public IP address or open

ports on the Mac node side, so it’s a perfectly suitable setup to have the Mac

machine in your home or office, sitting behind a NATed network.

Step 1: Open https://your-ci-server-name.com on Your Browser

You will need to open a port for JNLP. JNLP is a Java protocol to serve

applications to be executed elsewhere. Your worker node will download the

Jenkins worker application using this protocol.

Table of contents
 �
33

http://www.bugfender.com
http://www.bugfender.com

#################
#################

Step 2: From the Dashboard Go to Configure Jenkins > Configure

Global Security

Specify a Fixed port. In the example below we chose 8081, but you can

choose any port between 1024 and 65535. Make sure this port is open in your

firewall.

�

Table of contents
 �
34

http://www.bugfender.com
http://www.bugfender.com

#################
#################

Step 3: Create a New Node In Jenkins > Manage Nodes

�

Select New Node.

● Give it a name, for example macmini. It can be anything.

● Enter a Remote root directory: /tmp

● Choose Launch method: Java web start

● Add a Label: mac. (This label will be important when you need to specify

where jobs should be executed each time you configure them. Using this

label, you can make sure Mac projects exclusively run on your mac

machine. More on this below.)

Table of contents
 �
35

http://www.bugfender.com
http://www.bugfender.com

#################
#################

After saving you’ll see the newly added node in the node list.

�

Table of contents
 �
36

http://www.bugfender.com
http://www.bugfender.com

#################
#################

Step 4: Open the Node You Just Created and You Will Find a Command

Copy and paste this command in a terminal in your slave machine.

�

After a few seconds you’ll get the node up and running in your node list.

�

Table of contents
 �
37

http://www.bugfender.com
http://www.bugfender.com

#################
#################

Now your node is ready to accept build jobs!

Step 5: Download Xcode

Since you are planning to build iOS projects, you will need to download Xcode.

You can find it in the app store.

Command line tools: once you have Xcode installed, open a Terminal and

type:

xcode-select --install

Table of contents
 �
38

http://www.bugfender.com
http://www.bugfender.com

#################
#################

Configuring iOS Jobs

Now that you have a Mac worker machine, you’re ready to start building iOS

apps.

Step 1: Open https://your-ci-server-name.com on your browser and select

New Item

Specify the name of the new job and select Freestyle project:

�

Step 2: Make sure your build is running exclusively on the Mac machine.

In order to do that, in the General tab, select “Restrict where this project can

be run” and write mac as label expression (this label matches the one we

chose for the Mac worker in the node configuration above).

�

Table of contents
 �
39

http://www.bugfender.com
http://www.bugfender.com

#################
#################

Step 3: Under Source Code Management, specify the URL of your repository.

For our example, we’re building the Bugfender SDK sample app:

�

Step 4: Configuring automated build triggers.

You can select automated triggers for your builds if you don’t want to have to

manually trigger them. Typically, you should configure it so that a new build is

done automatically for every commit or a build is done periodically (eg.

nightly builds):

�

Step 5: Once the code is downloaded, we need to specify how to build it.

Table of contents
 �
40

http://www.bugfender.com
http://www.bugfender.com
https://github.com/bugfender/BugfenderSDK-iOS

#################
#################

In the Build section, we will Add a build step of type Execute shell and we will

execute xcodebuild like this:

�

cd Example # in our example, the project is not in the root of the repository 
 
xcrun xcodebuild -workspace BugfenderExample.xcworkspace \ 
 
 -scheme BugfenderExample \  
 -sdk iphoneos \  
 CODE_SIGN_IDENTITY="" CODE_SIGNING_REQUIRED=NO

This will trigger a build of the application for iOS devices, similar to when you

use the Product > Build for Running in Xcode.

Make sure you add the CODE_SIGN_IDENTITY=””

CODE_SIGNING_REQUIRED=NO bits in order to prevent Xcode from trying to

sign the built application, otherwise you will need to configure your

provisioning profiles and developer certificate in that machine, which makes

everything a bit more complicated.

Table of contents
 �
41

http://www.bugfender.com
http://www.bugfender.com

#################
#################

Adding Tests

If you want to run tests, you can set them up with another build step:

�

Code:
cd Example # again, we need to move directory 
 
mkdir -p output # this directory will contain the output of the
tests  
 
xcrun xcodebuild -workspace BugfenderExample.xcworkspace \ 
 
 -scheme "BugfenderExample" \  
 
 -sdk iphonesimulator \  
 
 -destination 'platform=iOS Simulator,name=iPhone 6,OS=10.0' \ 
 
 -derivedDataPath './output' \  
 
 Test

And that’s it! You’re ready to build and test our iOS sample application:

Table of contents
 �
42

http://www.bugfender.com
http://www.bugfender.com

#################
#################

�

Looking for more information about developing apps? Check out:

● Top Devices for Testing iOS Apps

Table of contents
 �
43

http://www.bugfender.com
https://bugfender.com/blog/top-devices-testing-ios-apps/
http://www.bugfender.com

#################
#################

Closing Words

Keys to Sustainably Managing Jenkins

Though Jenkins is practical, it hasn’t been easy.

In the beginning, some of our team members tended to ignore Jenkins

because they weren’t used to it. As developers, we recognize that this is

understandable. We have gradually adopted it for more Android and web

projects, and everyone has increasingly gotten more accustomed to it. Now

it’s a tool we rely on for our day-to-day work.

To increase usability, we have made three main improvements:

1. We originally ran Jenkins on an old MacBook Pro that was gathering

dust in the office. It turns out a laptop is not a great machine for running

a continuous service like this one because it heats up pretty quickly. So

now we run it in a cloud server for the web and Android workloads with

a Mac Mini as worker machine for the iOS and macOS projects.

2. We use git-flow as a way to structure and collaborate in the git

repository. Together with Jenkins, this helps us find out earlier if

something is not working properly. We can view each functionality

under development separately so we can solve issues before we put

everything together for a release.

3. We also use Jenkins for continuous delivery. Once we merge something

to the “develop” branch (again using git-flow conventions), the beta

version of the app is built automatically. Once we merge to the master, a

release version of the app is built automatically, ensuring every build

Table of contents
 �
44

https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
http://www.bugfender.com
http://www.bugfender.com

#################
#################

has passed all CI tests and is built in a consistent manner, leaving less

room for human error.

In the future we would also like to integrate the results of Jenkins builds back

into Bitbucket using the “build status” API.

Tips for Getting Started Today

First, we recommend you start small and grow your setup over time. Start

with only 1-2 things that bring a lot of value to your business.

For example, a good way to start is by making the app builds automatically

and publishing them for testing (somewhere like Google Play Beta, TestFlight

or TestFairy).

This seems simple, but already provides a lot of value by standardizing the

way you build your app, removing the human risk in an error-prone task, and

making beta builds available to everyone in your team.

Second, make sure to allocate some time in your team schedule for running a

CI system and writing tests that work. This might or might not be right for

your team, so it will require some thought and planning. Don’t just don’t do it

because it sounds cool or sounds like “the right thing to do”.

If you understand the benefits, you will be willing to put up with the burden of

fixing it when it doesn’t work (and for sure this will eventually happen). If you

don’t, you will probably end up giving up and then the investment you made by

setting it up in the first place will be lost. This can leave a bad impression.

Table of contents
 �
45

http://www.bugfender.com
https://github.com/jenkinsci/bitbucket-build-status-notifier-plugin
https://github.com/jenkinsci/bitbucket-build-status-notifier-plugin
http://www.bugfender.com

#################
#################

Lastly, don’t forget that setting up a CI/CD environment is all about the

bottom line. In the long-term, Jenkins is an investment that will save your

company money by significantly speeding up the build process. If you find

yourself trying to convince your team or your manager—or the suits!—that

Jenkins is the optimal solution for your devops team, don’t forget to crunch

the numbers and show how much money it will save the company in the long

run.

�

That’s it! If you have questions or want to reach out, we would love

to hear from you. Chat with us directly on our website or email us at

support@bugfender.com.

Table of contents
 �
46

https://bugfender.com
mailto:support@bugfender.com
http://www.bugfender.com
http://www.bugfender.com

#################
#################Table of contents
 �
47

http://www.bugfender.com
http://www.bugfender.com

